Proteins

Proteins are Made of Amino Acids

Proteins are composed of long chains of **amino acids**. There are **twenty different** amino acids used in proteins. They all contain carbon, hydrogen, oxygen and nitrogen, and some contain sulfur. All have the **same structure** as the one in the diagram but **R** can be one of twenty different chemical groups.

Proteins are Held Together by Peptide Bonds

- 1) The chains of amino acids are attached to each other by **strong peptide bonds**.
- 2) The amino acids can be arranged in any sequence and proteins can be up to **several hundred** amino acids long.
- 3) The number of different proteins that are possible is almost unimaginable. Consider that there are several thousand ways of arranging a chain of just three amino acids, with each combination forming a different protein. Add one more amino acid to the chain and the number of possibilities leaps into the hundreds of thousands.
- 4) It's the **order** of the amino acids in a protein that determines its **structure** and it's the structure of a protein that determines **how it works**.

(N.B. Each different shape represents a different amino acid.)

Each Protein has its Own Special Shape

- 1) The order in which the amino acids are arranged in a protein chain is called the **primary structure**.
- Some chains coil up or fold into pleats that are held together by weak forces of chemical attraction called hydrogen bonds.
 The coils and pleats are the secondary structure of a protein.
- 3) Some proteins (especially enzymes) have a **tertiary structure**. The coiled chain of amino acids is folded into a **ball** that's held together by a mixture of weak chemical bonds (e.g. hydrogen bonds) and stronger bonds (e.g. disulfide bonds).
- 4) If the protein has a roughly spherical shape it's called a **globular protein** (e.g. enzymes are classed as globular proteins).

The name's Bond. Peptide Bond...

- 1) What is the primary structure of a protein?
- 2) What type of bond holds together the secondary structure of a protein?

Carbohydrates

Carbohydrates Contain Three Elements

Carbohydrates contain **carbon**, **hydrogen** and **oxygen**. There are several types of carbohydrate, e.g. sugars, starch and cellulose.

- 1) Sugars are small, water-soluble molecules that taste sweet.
- They're divided into two groups: monosaccharides (pronounced: mono-sack-a-rides) and disaccharides (die-sack-a-rides).
- Monosaccharides are the single units from which all the other carbohydrates are built.
 Glucose and fructose are both monosaccharides.
 Glucose has two forms — alpha (α) and beta (β).

B-glucose molecule

CH₂OH

H

CH₂OH

CH₂OH

CH₂OH

H

CH₂OH

CH₂

α-glucose molecule

ÇH₂OH

GLUCOSE + GLUCOSE → MALTOSE (a disaccharide) + WATER GLUCOSE + FRUCTOSE → SUCROSE (a disaccharide) + WATER

Starch is a Polysaccharide

Polysaccharides are polymers — large molecules made up of monomers (smaller units). The monomers of polysaccharides are monosaccharides. Starch molecules are made up of two different polysaccharides — amylose and amylopectin, which are polymers of glucose. The insoluble, compact starch molecules are an ideal way of storing glucose. Starch is only found in plant cells.

Amylose

Amylopectin

Cellulose is Also a Polysaccharide

- 1) Like starch, cellulose is a polymer of glucose, but the **bonding** between the glucose units is different.
- 2) As a result, the cellulose molecules are long and straight.
- 3) Several cellulose molecules can lie side by side to form **microfibrils**.
- 4) The molecules are held together by many weak **hydrogen bonds**.
- 5) Cellulose is only found in plant cells.
- 6) The microfibrils strengthen the plant cell wall.

Three cellulose molecules etc. etc. Weak hydrogen bonds

A poly-sack-a-ride — a bunch of kids on a helter skelter...

- 1) Name two monosaccharides.
- 2) Which disaccharide is composed of two molecules of glucose?
- 3) Name two polysaccharides.

Lipids

Lipids Contain Carbon, Hydrogen and Oxygen

Lipids are oils and fats. Plant oils and animal fats are mostly made up of a group of lipids called **triglycerides**. A triglyceride consists of a molecule of **glycerol** with **three fatty acids** attached to it.

A fatty acid molecule is a long chain of **carbon atoms** with an **acid group** (-COOH) at one end. **Hydrogen atoms** are attached to the carbon atoms. If every carbon atom in the chain is joined by a **single bond**, we say that the fatty acid is **saturated**. If one or more of the bonds is a **double bond**, it's said to be **unsaturated**. A fatty acid with many double bonds is **polyunsaturated**.

Phospholipids are a Special Type of Lipid

Phospholipids (pronounced: foss-foe-lip-id) are like triglycerides, but instead of having three fatty acid chains, they have **two** fatty acid chains and a **phosphate** group.

Cell membranes are made from a **double layer** of phospholipids.

Acid chain and the phospholipids — sounds like a punk band...

- 1) Which elements are fatty acids composed of?
- 2) What's the difference between saturated fatty acids and unsaturated fatty acids?
- 3) What's the difference between triglycerides and phospholipids?

Enzymes

Enzymes Help to Speed up Biochemical Reactions

- 1) In a living cell, thousands of **biochemical reactions** take place every second. The sum of these reactions is called **metabolism**. A single chain of these reactions is called a **metabolic pathway**.
- 2) Without enzymes, these reactions would take place very **slowly** at normal body temperature.
 - 1) Enzymes are biological catalysts.
 - 2) They **increase** the **rate** (speed) of reactions.

How do Enzymes Act as Catalysts?

- 1) Even reactions that release energy require an **input of energy** to get them going, e.g. the gas from a Bunsen burner doesn't burn until you provide heat energy from a match.
- 2) This input energy is called the **activation energy**. A reaction that needs a high activation energy can't start at a low temperature of 37 °C (i.e. body temperature).
- 3) Enzymes reduce the activation energy.

This graph shows the activation energies of a reaction with and without an enzyme:

Enzymes are Proteins

- 1) All enzymes are **globular proteins** (because they're roughly spherical).
- 2) It's the order of amino acids in an enzyme that determines its **structure**, and so how it works.
- 3) Enzymes can be involved in **breaking down** molecules or **building** molecules. For example:
 - **Digestive enzymes** are important in the digestive system, where they help to break down food into smaller molecules, e.g. carbohydrases break down carbohydrates.
 - Enzymes involved in **DNA replication** help to build molecules, e.g. DNA polymerase.

I could really use a catalyst to help me write this gag...

- 1) What is the function of enzymes?
- 2) What is activation energy?
- 3) What do digestive enzymes do?

Enzymes

Enzymes have an Active Site

- 1) A substance that's acted upon by an enzyme is called its **substrate**.
- 2) The **active site** is a region on the surface of the enzyme molecule where a substrate molecule can attach itself. It's where the catalysed reaction takes place.
- 3) The shape of the substrate molecule and the shape of the active site are **complementary**, i.e. they fit each other.
- 4) Almost as soon as the **enzyme-substrate complex** has formed, the products of the reaction are released and the enzyme is ready to accept another substrate molecule.

Enzymes are Specific

- 1) An enzyme usually catalyses one **specific** chemical reaction.
- 2) The substrate molecule must be the **correct shape** to fit into the active site.
- 3) **Only one substrate** will be the correct shape to fit, so each enzyme only catalyses one specific reaction.
- 4) Anything that **changes** the shape of the active site will **affect** how well the enzyme works.

The Effect of Temperature on Enzyme Activity

As temperature **increases**, enzyme reactions become **faster**, because the molecules have more **energy**. However, at high temperatures the atoms of the enzyme molecule vibrate more rapidly and **break** the weak bonds that hold the **tertiary structure** together. The **shape** of the active site **changes** and the substrate can no longer fit in. The enzyme is said to be **denatured**.

The Effect of pH on Enzyme Activity

Acids and alkalis can denature enzymes. Hydrogen ions (H+) in acids and hydroxyl ions (OH-) in alkalis disrupt the weak bonds and change the shape of the active site.

Lonely enzyme seeking complementary substrate...

- 1) Why are enzymes described as 'specific'?
- 2) Explain why a denatured enzyme will not function.
- 3) Describe the effect of pH on enzyme activity.

Eukaryotic and Prokaryotic Cells

Organisms can be Prokaryotes or Eukaryotes

- 1) **Prokaryotic** (pronounced like this: pro-carry-ot-ick) organisms are prokaryotic cells (i.e. they're **single-celled** organisms) and **eukaryotic** (you-carry-ot-ick) organisms are made up of eukaryotic cells.
- Both types of cells contain organelles.
 Organelles are parts of cells
 each one has a specific function.

Eukaryotic cells are complex and include all animal and plant cells.

Prokaryotic cells are smaller and simpler, e.g. bacteria.

4 organelles animal and plant cells have in common:

3 extras that only plant cells have:

0

0

0

O

0

B

0

0

6

Nucleus contains genetic material (DNA) that controls what the cell **does**.

Cytoplasm contains enzymes that speed up biochemical reactions.

Cell-surface membrane holds the cell together and controls what goes in and out.

Mitochondria are where glucose and oxygen are used in respiration to provide a source of energy for the cell.

Rigid cell wall made of cellulose, gives the cell support.

Vacuole contains cell sap, a weak solution of sugar and salts.

Chloroplasts contain chlorophyll for photosynthesis. They're found in the green parts of plants, e.g. leaves and stem.

Bacterial Cells are Prokaryotic

- 1) Prokaryotes like bacteria are roughly a **tenth the size** of eukaryotic cells.
- 2) Prokaryotic cells **don't contain** a nucleus, mitochondria or chloroplasts.
- 3) As they **don't** have a nucleus, their **DNA floats freely** in the **cytoplasm**. Some prokaryotes also have **rings of DNA** called **plasmids**.
- 4) Some prokaryotes have a **flagellum** which **rotates** and allows the cell to **move**.
- 5) The diagram shows a bacterial cell as seen under an **electron microscope** (see next page).

Bacterial cheerleaders — they never stop swirling their flagella...

- 1) Give an example of a prokaryotic cell.
- 2) Name four organelles that plant and animals cells both have.
- 3) What is the function of mitochondria?

Microscopes

You Can See Cell Structure with a Light Microscope

A **light microscope** can magnify up to 1500 times and allows you to see individual animal and plant cells along with the organelles inside them.

- 1) If the cells have been **stained** you can see the dark-coloured **nucleus** surrounded by lighter-coloured **cytoplasm**.
- 2) Tiny mitochondria and the black line of the cell membrane are also visible.
- 3) In plant cells, the **cell wall**, **chloroplasts** and the **vacuole** can be seen.

Electron Microscopes have a Greater Magnification

- 1) The detailed **ultrastructure** of cells was revealed in the 1950s when the **electron microscope** was invented.
- 2) An electron microscope can magnify objects more than 500 000 times and, more importantly, it allows greater detail to be seen than a light microscope. For example, it allows you to see the detailed structures inside organelles such as mitochondria and chloroplasts.
- 3) The image that's recorded is called an **electron micrograph**.

I put a slide on the stage and then slid straight off the edge...

- 1) Name three things visible with a light microscope in both animal and plant cells.
- 2) Which type of microscope must be used to show the detailed ultrastructure of a cell?
- 3) What is the image recorded by an electron microscope called?

Functions of the Nucleus, Mitochondria and Cell Wall

Nucleus

- 1) The **nucleus** is the control centre of the cell.
- 2) It contains DNA (deoxyribonucleic acid): the coded information needed for making proteins.
- 3) During **cell division** the chromosomes carrying the long DNA molecules coil up, becoming shorter and thicker and visible with a light microscope.
- 4) Electron micrographs show that there's a double membrane around the nucleus.

Mitochondria

Mitochondria are about the size of bacteria, so they can be seen with a light microscope, but you need an electron microscope to see any of the detail. Each mitochondrion has a **smooth outer membrane** and a **folded inner membrane**:

Their job is to capture the energy in glucose in a form that the cell can use. To do this **aerobic respiration** takes place inside the mitochondria.

Word equation: GLUCOSE + OXYGEN → CARBON DIOXIDE + WATER + (ENERGY)

The energy released by respiration ends up in molecules of **ATP** (adenosine triphosphate). ATP is used in the cell to provide the energy for **muscle contraction**, **active transport** (called active uptake in some text books) and **building large molecules** from small ones, as well as many other processes.

Cell Wall — Plants

- 1) The plant cell wall is relatively rigid and provides support for the cell.
- 2) It mainly consists of bundles of long, straight cellulose molecules.
- 3) The cellulose molecules lay side by side to form microfibrils.

Doctor, doctor my DNA is getting shorter and thicker...*

- 1) Which organelle acts as the control centre of the cell?
- 2) In which organelle does aerobic respiration occur?
- 3) Describe the membranes of a mitochondrion.
- 4) What is the word equation for aerobic respiration?
- 5) Name the molecule used to provide energy for processes in the cell.
- 6) Name the molecule that is found in bundles in plant cell walls.

Cell Membranes

Structure of the Cell-Surface Membrane

The **cell-surface membrane** is the very thin structure around an individual cell.

- 1) Electron micrographs show that the cell-surface membrane consists of a double layer of **phospholipid** molecules tightly packed together.
- 2) Bigger protein molecules are embedded in the phospholipid molecules.
- 3) Some proteins go all the way through the membrane and some only go halfway.
- 4) Membranes surrounding the organelles inside cells have the same structure.

Inside the cell

Cell-surface membranes can also be called plasma membranes.

Do I Really have to Know this Much Detail?

- 1) The answer is "Yes". Once you're familiar with the molecular structure of the membrane you can explain how the membrane **controls** the passage of substances **in** and **out** of the cell.
- 2) Because the membrane only allows certain substances through it, it's described as being **partially permeable**.

Substances Pass Through Membranes by Four Methods

1 Diffusion

- 1) The particles of liquids and gases are constantly **moving about**. This movement causes the particles to spread from an area of **higher** concentration to an area of **lower** concentration.
- 2) Particles will **diffuse** through the cell membrane as long as they are small enough to pass through the very small gaps **between** the phospholipid molecules. Water, oxygen and **carbon dioxide** molecules can do this.
- 3) The cell doesn't need to provide any energy for this process.

The difference in concentration is sometimes called a **concentration gradient**, e.g. a big difference in concentration is a big concentration gradient.

2 Osmosis

- 1) Osmosis is the diffusion of water molecules across a partially permeable membrane from a region of higher concentration of water molecules to a region of lower concentration of water molecules. The cell doesn't need to provide energy.
- 2) The concentration of water molecules is also referred to as the water potential. At AS and A-level, you tend to talk about water moving from a region of higher water potential to a region of lower water potential.

Cell Membranes

3 Facilitated Diffusion

- 1) Glucose and many other water soluble molecules are **too big** to diffuse across the membrane by themselves. They must be helped across by **carrier proteins**.
- 2) Each substance has its own specific carrier protein.
- 3) For example, a molecule of glucose fits onto the outside end of a glucose carrier protein.
- 4) This causes the protein to **change shape**, allowing the glucose molecule to diffuse through it into the cytoplasm of the cell. The cell **doesn't** need to provide any energy.

Mineral ions like sodium (Na⁺) and potassium (K⁺) have electrical charges on them, so they also need help to cross the membrane. Specific **channel proteins** in the membrane allow them to diffuse through.

4) Active Transport (or Active Uptake)

- 1) When a cell needs to move substances across the membrane from a region of **low** concentration to a region of **higher** concentration, it must provide **energy**.
- 2) The substance fits into a **specific carrier protein**, then molecules of **ATP** (see page 8) provide the energy to change the shape of the protein.
- 3) As it changes shape the protein actively transports the substance across the membrane.
- 4) These special **carrier proteins** are sometimes called **"pumps"** because they're moving substances **against** a concentration gradient.

<u> Active transport — isn't that just riding a bike?</u>

- 1) Name the two types of molecule that make up the cell membrane.
- 2) Give four ways substances can cross cell membranes.
- 3) What do you call the diffusion of water molecules through the cell membrane?
- 4) Give another term for the concentration of water molecules.
- 5) Name the two types of protein involved in facilitated diffusion.
- 6) Why does active transport require ATP?